Problem 14: Lead iodide

1. The graph obtained is one of two straight lines, meeting at a peak of about 2.50 g $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$.

Data according to the reaction $2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq})$ $\rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{PbI}_{2}(\mathrm{~s})$

Mass of $\mathrm{Pb}(\mathrm{NO})_{3}(\mathrm{~g})$	Mass of $\mathrm{PbI}_{2}(\mathrm{~g})$
0.500	0,696
1.000	1.392
1.500	2.088
$4.000(1.000 \mathrm{~g} \mathrm{KI})$	1.389
$3.000(2.000 \mathrm{~g} \mathrm{KI})$	2,778

2. The total quantity of reactant is limited to 5.000 g . If either reactant is in excess, the amount in excess will be "wasted", because it cannot be used to form product. Thus, we obtain the maximum amount of product when neither reactant is in excess; there is a stoichiometric amount of each.

The balanced chemical equation for this reaction,

$$
2 \mathrm{KI}(\mathrm{aq})+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{aq}) \rightarrow 2 \mathrm{KNO}_{3}(\mathrm{aq})+\mathrm{PbI}_{2}(\mathrm{~s})
$$

shows that stoichiometric quantities are two moles of $\mathrm{KI}(166.00 \mathrm{~g} / \mathrm{mol})$ for each mole of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}(331.21 \mathrm{~g} / \mathrm{mol})$. If we have 5.000 g total, we can let the mass of KI equal $x \mathrm{~g}$, so that the mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=(5.000-x) \mathrm{g}$. Then we have

$$
\text { amount } \mathrm{KI}=x \mathrm{~g} \mathrm{KI} \times \frac{1 \mathrm{~mol} \mathrm{KI}}{166.00 \mathrm{~g} \mathrm{KI}}=\frac{x}{166.00}
$$

amount $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}=(5.000-x) \mathrm{g} \mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{331.21 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}=\frac{5.000-x}{331.21}$
At the point of stoichiometric balance, amount $\mathrm{KI}=2 \times$ amount $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

$$
\begin{aligned}
& \frac{x}{166.00}=2 \times \frac{5.000-x}{331.21} \text { or } 331.21 x=10.00 \times 166.00-332.00 x \\
& x=\frac{1660.0}{331.21+332.00}=2,503 \mathrm{~g} \mathrm{KI} \times \frac{1 \mathrm{~mol} \mathrm{KI}}{166.00 \mathrm{~g} \mathrm{KI}}=0.01508 \mathrm{~mol} \mathrm{KI} \\
& 5.000-x=2.497 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}{331.21 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}}=0.007539 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2}
\end{aligned}
$$

To determine the proportions precisely, we use the balanced chemical equation.

$$
\text { maximum } \mathrm{PbI}_{2} \text { mass }=2.503 \mathrm{~g} \mathrm{KI} \times \frac{1 \mathrm{~mol} \mathrm{KI}^{2}}{166.00 \mathrm{~g} \mathrm{KI}} \times \frac{1 \mathrm{~mol} \mathrm{PbI}_{2}}{2 \mathrm{~mol} \mathrm{KI}^{2}} \times \frac{461.0 \mathrm{~g} \mathrm{PbI}_{2}}{1 \mathrm{~mol} \mathrm{PbI}_{2}}=
$$

$3.476 \mathrm{~g} \mathrm{PbI}_{2}$

Problem 15: Octahedral complexes

Problem 16: Isomerism in Inorganic Chemistry

1. ${ }_{27} \mathrm{Co}\left[1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}\right] 3 d^{7} 4 s^{2}$
$\mathrm{Co}^{3+} \underset{[\mathrm{Ar}] 3 \mathrm{~d}^{6}}{\mathrm{Ar}}$

$\uparrow \downarrow$	\uparrow	\uparrow	\uparrow	\uparrow

2. dative covalent by the ligand into an empty metal orbital. $\mathrm{d}^{2} \mathrm{sp}^{3}$ hybridization

| $\uparrow \downarrow$ |
| :--- | :--- | :--- | :--- | :--- |
| | | | | |

$\uparrow \downarrow$
4 s

$\uparrow \downarrow$	$\uparrow \downarrow$	$\uparrow \downarrow$
4 p		

outer sphere paramagnetic complex

cis

4. $f a c$

A

B

$\pm \mathrm{Co}(\mathrm{en})_{3}{ }^{3+}$
5. 2 enantiomers $\pm \mathrm{Co}(\mathrm{en})_{3}{ }^{3+}$

Problem 17: Tetrahedral and square complexes

sp 3 : tetrahedral/paramagnetic

3d
$\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ $\uparrow \downarrow$ dsp^{2}.

dsp 2 : square planar/diamagnetic

Problem 18: Copper enzyme

1. $\mathrm{Cu}: 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}, \mathrm{Cu}(\mathrm{I}): 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}$, a. $\mathrm{Cu}(\mathrm{II}): 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{9}$
2. Oxidised PC
3. $\mathrm{A}=\varepsilon . \mathrm{c} .1 \Rightarrow \mathrm{c}=0.700 /(4500 \times 1)=1.56 \times 10^{-4} \mathrm{~mol} \mathrm{dm}^{-3} .5 \mathrm{~cm}^{3}$ of the solution contain $1.56 \times 10^{-4} \times 5 \times 10^{-3} \times 10500 \times 1000=8.2 \mathrm{mg}$ PC. $\# C u$ atoms $=1.56 \times$ $10^{-4} \times 5 \times 10^{-3} \times 6.0221 \times 10^{23}=4.7 \times 10^{17}$
4. Electronic configurations :

Zn (II): $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}, \mathrm{Cd}(\mathrm{II}): 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{2} 4 \mathrm{p}^{6} 4 \mathrm{~d}^{10}$, Co (II): $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{7}, \mathrm{Ni}$ (II): $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{8}$. Redox inactive are the Zn (II) and $\mathrm{Cd}(\mathrm{II})$ reconstituted Blue Copper Proteins.

Problem 19: Palladium nanoclusters

1. $N=\frac{N_{o} \cdot \rho \cdot V}{\text { AtomicWeight }}=307 \mathrm{Pd}(0)$ atoms per nanocluster
$V=$ the volume of a nanocluster $=\frac{4}{3} \pi\left(\frac{D}{2}\right)^{3}$
According to the equation $y=10 n^{2}+2$, the number of $\operatorname{Pd}(0)$ atoms in a 4 full-shells nanocluster is $N=1+12+42+92+162=309$, hence it is a full shell cluster.
2. From Fig. 4 the H_{2} uptake is $\Delta \mathrm{P}_{\mathrm{H}_{2}}=4.15-2.05=2.10 \mathrm{~atm}$ in 184 min .
$\Delta \mathrm{P}_{\mathrm{H}_{2}} \mathrm{~V}=\Delta \mathrm{n}_{\mathrm{H}_{2}} \mathrm{RT}$, hence $\Delta \mathrm{n}_{\mathrm{H}_{2}}=0.029$ mol where $\mathrm{V}=400-55=345 \mathrm{~cm}^{3}$
Initially $\mathrm{n}_{\mathrm{C}_{6} \mathrm{H}_{12}}=\frac{\mathrm{V} \rho}{\mathrm{M}}=\frac{5 \mathrm{~cm}^{3} \times 0.81 \mathrm{~g} \mathrm{~cm}^{-3}}{(6 \times 12.0107+12 \times 1.00794) \mathrm{g} \mathrm{mol}^{-1}}=0.048 \mathrm{~mol}$
(i) Conversion $=\frac{\text { reacted moles }}{\text { initial moles }}=\frac{0.029}{0.048}=0.60=60 \%$
(ii) The catalytically active $\operatorname{Pd}(0)$ atoms are $\frac{162}{309}=0.524=52.4 \%$ of the total $\operatorname{Pd}(0)$ amount. So: $\mathrm{TON}=\frac{\mathrm{n}_{\mathrm{H}_{2}}}{\mathrm{n}_{\mathrm{Pd}}}=\frac{0.029 \mathrm{~mol}}{0.524 \times 50 \times 10^{-6} \mathrm{~mol}}=1106$ and
$\mathrm{TOF}=\frac{\mathrm{TOF}}{\mathrm{t}}=\frac{1106}{184 \mathrm{~min}}=6.0 \mathrm{~min}^{-1}$
3. The spectral regions (δ / ppm) and the respective relative integrals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of hex-1-ene (Fig. 5a and Table) are assigned as follows:

$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	$\mathbf{4}$	$0.88-0.96$ (3)	$1.15-1.32$ (4)	$1.99-2.08$ (2)	$5.65-5.79$	(1)	$4.85-4.98$
			(2)				

The integral ratios of the second ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum (Fig. 5b and Table) suggest that both hex-1-ene and hexane are present. The differences in the integral values of the spectral regions $0.88-0.96 \mathrm{ppm}$ and $1.12-1.37 \mathrm{ppm}$ must be due to the presence of hexane. The relative integrals of second spectrum are converted as shown in the table below:

	δ / ppm	relative integral
Solution of the reaction (Fig. 5b)	$0.88-0.96$	$3+6$
	$1.12-1.37$	$4+8$
	$1.99-2.08$	2
	$4.85-4.98$	2
	$5.65-5.79$	1

So, the spectral regions (δ / ppm) and the respective relative integrals in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum corresponding to hexane are assigned as follows:

| $\mathbf{1 '}^{\prime} \quad \mathbf{2 ' ~}^{\prime} \mathbf{1 '}$ | $\mathbf{1 '}$ | $\mathbf{2 '}^{\prime}$ |
| :---: | :---: | :---: | :---: |
| $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}$ | $0.88-0.96$ | $1.15-1.32$ |

Finally, comparing the integral values per proton for the hex-1-ene and hexane the $\%$ conversion of hex-1-ene to hexane, after 30 min is 50%

Problem 20: Drug kinetics

$$
\begin{align*}
& \mathrm{A}_{\mathrm{s}} \xrightarrow{\mathrm{k}_{1}} \mathrm{~A}_{\mathrm{b}} \longrightarrow \text { products } \tag{1}\\
& -\frac{\mathrm{d}[\mathrm{~A}]_{\mathrm{s}}}{\mathrm{dt}}=\mathrm{k}_{\mathrm{l}}[\mathrm{~A}]_{\mathrm{s}} \tag{2}
\end{align*}
$$

Integration of Eq. 2 gives $[A]_{s}=[A]_{0} \exp \left(-k_{1} t\right)$, where $[A]_{o}$ the concentration of the drug in the stomach at zero time.

$\frac{[\mathrm{A}]_{0}-[\mathrm{A}]_{\mathrm{s}}}{[\mathrm{A}]_{0}}=0.75 \Rightarrow \frac{[\mathrm{~A}]_{\mathrm{s}}}{[\mathrm{A}]_{0}}=0.25=\left(\frac{1}{2}\right)^{2}$ Since $1 / 4$ of the initial amount remains after one hour, $(1 / 4)^{2}=1 / 16=0.625$ will remain after 2 hours, which corresponds to 4 half lives. That is 6.25% of $[\mathrm{A}]_{\mathrm{s}}$ is left.

Problem 21: $\mathrm{Br}_{2}+\mathrm{CH}_{4}$ reaction mechanism

1 The rate of formation of $\mathrm{CH}_{3} \mathrm{Br}$ is given by the equation:

$$
\begin{equation*}
\mathrm{v}=+\frac{\mathrm{d}\left[\mathrm{CH}_{3} \mathrm{Br}\right]}{\mathrm{dt}}=\mathrm{k}_{3}\left[\mathrm{CH}_{3}\right]\left[\mathrm{Br}_{2}\right] \tag{1}
\end{equation*}
$$

The "steady state" approximations for CH_{3} and Br are given by the equations:

$$
\begin{gather*}
\frac{\mathrm{d}\left[\mathrm{CH}_{3}\right]}{\mathrm{dt}}=\mathrm{k}_{2}[\mathrm{Br}]\left[\mathrm{CH}_{4}\right]-\left[\mathrm{CH}_{3}\right]\left(\mathrm{k}_{3}\left[\mathrm{Br}_{2}\right]+\mathrm{k}_{4}[\mathrm{HBr}]\right)=0 \quad \text { (2) } \tag{2}\\
\frac{\mathrm{d}[\mathrm{Br}]}{\mathrm{dt}}=2 \mathrm{k}_{1}\left[\mathrm{Br}_{2} \llbracket \mathrm{M}\right]-\mathrm{k}_{2}\left[\mathrm{Br} \llbracket \mathrm{CH}_{4}\right]+\left[\mathrm{CH}_{3}\right]\left(\mathrm{k}_{3}\left[\mathrm{Br}_{2}\right]+\mathrm{k}_{4}[\mathrm{HBr}]\right)-2 \mathrm{k}_{5}[\mathrm{Br}]^{2}[\mathrm{M}]=0 \tag{3}
\end{gather*}
$$

From equation (2):

$$
\begin{equation*}
\left[\mathrm{CH}_{3}\right]_{\mathrm{st}}=\frac{\mathrm{k}_{2}\left[\mathrm{Br} \llbracket \mathrm{CH}_{4}\right]}{\mathrm{k}_{3}\left[\mathrm{Br}_{2}\right]+\mathrm{k}_{4}[\mathrm{HBr}]} \tag{4}
\end{equation*}
$$

From equations (3) and (4):

$$
\begin{equation*}
[\mathrm{Br}]_{\mathrm{st}}=\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{5}}\left[\mathrm{Br}_{2}\right]\right)^{\frac{1}{2}} \tag{5}
\end{equation*}
$$

By combining equations (1), (4) and (5) the expression for the rate of formation of $\mathrm{CH}_{3} \mathrm{Br}$ as a function of the concentrations of the stable species that are involved in the reaction is given by equation (6):

$$
\begin{equation*}
\mathrm{v}=\left(\frac{\mathrm{k}_{1}}{\mathrm{k}_{5}}\right)^{\frac{1}{2}} \mathrm{k}_{2} \cdot \frac{\left[\mathrm{Br}_{2}{ }^{\frac{1}{2}}\left[\mathrm{CH}_{4}\right]\right.}{\frac{\mathrm{k}_{4}[\mathrm{HBr}]}{\mathrm{k}_{3}\left[\mathrm{Br}_{2}\right]}+1} \tag{6}
\end{equation*}
$$

2

Start of the reaction	II
Steady state condition	I
Near to the end of the reaction	III

3

Start of the reaction	$\left[\mathrm{Br}_{2}\right] \gg[\mathrm{HBr}]$ and since $\mathrm{k}_{3} \approx \mathrm{k}_{4}:$
	$\mathrm{k}_{3}\left[\mathrm{Br}_{2}\right] \gg \mathrm{k}_{4}[\mathrm{HBr}]$, so $\mathrm{k}_{4}[\mathrm{HBr}] / \mathrm{k}_{3}\left[\mathrm{Br}_{2}\right] \ll 1$
Steady state condition	-
Near to the end of the reaction	$\left[\mathrm{Br}_{2}\right] \ll[\mathrm{HBr}]$ and since $\mathrm{k}_{3} \approx \mathrm{k}_{4}:$
	$\mathrm{k}_{3}\left[\mathrm{Br}_{2}\right] \ll \mathrm{k}_{4}[\mathrm{HBr}]$, so $\mathrm{k}_{4}[\mathrm{HBr}] / \mathrm{k}_{3}\left[\mathrm{Br}_{2}\right] \gg 1$

